9 February 2023
DownloadTopographic feature maps are low dimensional representations of data, that preserve spatial dependencies. Current methods of training such maps (e.g. self organizing maps - SOM, generative topographic maps) require centralized control and synchronous execution, which restricts scalability. We present an algorithm that uses N autonomous units to generate a feature map by distributed asynchronous training. Unit autonomy is achieved by sparse interaction in time \& space through the combination of a distributed heuristic search, and a cascade-driven weight updating scheme governed by two rules: a unit i) adapts when it receives either a sample, or the weight vector of a neighbor, and ii) broadcasts its weight vector to its neighbors after adapting for a predefined number of times. Thus, a vector update can trigger an avalanche of adaptation. We map avalanching to a statistical mechanics model, which allows us to parametrize the statistical properties of cascading. Using MNIST, we empirically investigate the effect of the heuristic search accuracy and the cascade parameters on map quality. We also provide empirical evidence that algorithm complexity scales at most linearly with system size N. The proposed approach is found to perform comparably with similar methods in classification tasks across multiple datasets.
This resource is available as a free download from Aspect Capital. Please click the button below to download the file.
根据《私募投资基金监督管理暂行办法》第十四条的规定:“私募基金管理人、私募基金销售机构不得向合格投资者之外的单位和个人募集资金” 。宽立(上海)私募基金管理有限公司(“本公司”)作为一家在中国证券投资基金业协会(“基金业协会”)登记的私募证券基金管理人(管理人登记编码:P1074913)仅在中华人民共和国(“中国”)(就此目的而言不包括香港和澳门特别行政区或台湾)境内向符合要求的合格投资者宣传推介私募基金,在您浏览本公司有关境内私募基金的内容前,请您确认您或您所代表的机构符合合格投资者的条件相关要求。若您不符合以下“合格投资者”标准或不同意以下条款及相关约束,请勿继续访问或使用本网站及其所载信息及资料。点击“同意并接受”键,视为您已经充分阅读并确认自己符合以下“合格投资者”标准,且充分理解并同意遵守本提示。
私募基金合格投资者标准如下:
一、具备相应风险识别能力和风险承担能力,投资于单只私募基金的金额不低于100万元且符合下列相关标准的单位和个人:
(前款所称金融资产包括银行存款、股票、债券、基金份额、资产管理计划、银行理财产品、信托计划、保险产品、期货权益等。)
二、下列投资者视为合格投资者: